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PAB

La science quantique

Une vision singulière

VIII) Oscillateur harmonique

P.A. Besse
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PAB

Oscillateur harmonique

mécanique:

Ecriture normalisée
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PAB Oscillateur harmonique
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PAB Hamiltonien mécanique:
Variables canoniques q et p
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PAB Hamiltonien mécanique:
Variables canoniques normées Q, P
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PAB

Opérateurs de création

et d’annihilation
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PAB Opérateurs de création et d’annihilation
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PAB Hamiltonien de type:
«oscillateur harmonique»

 1
2H a a    Considérons un hamiltonien de la forme:

avec:  , 1a a   et
†a a 
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PAB Mode et énergie du vide
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PAB Fonction d’onde pour n-bosons

Supposons que les fonctions d’onde ont la forme:

1 0
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PAB Modes de Fock
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PAB Modes de Fock

Mode du vide:
0 0
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PAB Annihilation
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Opérateur d’annihilation:
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PAB Oscillateurs quantiques
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PAB Dénombrement et normes

1n n na a n a n          
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Toutes les fonctions d’onde sont normées 1 0,1,...n n n    

Normes:
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PAB Interprétation de l’Hamiltonien
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H        

 
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L’Hamiltonien:
- annihile puis crée
- crée puis annihile
un boson
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PAB Exemples d’Hamiltoniens

21

2cinH P
m

Energie cinétique: 2

2
H X


Energie potentielle

d’un ressort:

Energie électrique:
20

2EH E


 Energie magnétique:
2

0

1

2BH B




Energie capacitive:
21

2CH Q
C

 Energie inductive
21

2LH
L


Energie d’interaction
électromagnétique:

interH B  


...

Flux 
magnétique

Moment 
magnétique

Interactions spin-spin: 1 2JH    
 
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PAB

Oscillateur harmonique:

Solution par le théorème

d’Ehrenfest
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PAB Oscillateur harmonique

Hamiltonien: 

Commutateurs:

   2, ,

2

PQ P P Q

P

Q P QP P P PQ QP P P PQ Q P P P QP

i P P i i

P             



   
    

2, 2Q P i P    
2, 2P Q i Q     

 2 2

2

P Q
H 


   ,Q P i

   2, ,

2

QP Q Q PQ

Q

P Q PQ Q Q QP PQ Q Q QP P Q Q Q PQ

i Q Q i i

              
      

  




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PAB Oscillateur harmonique

Ehrenfest:  1
,

A
A A H

t t i

 
 

  

  21 1
, 0 ,

2

Q
Q Q H Q P P

t t i i

             


 

  21 1
, 0 ,

2

P
P P H P Q Q

t t i i

              


 

Solutions
classiques

   
2

2
2

cos sinQ P Q Q A t B t
t t

    
         

 
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PAB Exemple

x

E

x

x

X X 

t

x xx
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PAB

Oscillateur LC



p.8.29 “Oscillateur harmonique”Pierre-André Besse 2025

PAB Distributed coplanar waveguide resonators

1 mm

M. Goeppl et al., J. Appl. Phys. 104, 113904 (2008)

Note: Images of capacitors taken

from different sample.
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PAB Hamiltonien LC et variables canoniques

C U C 


    Charge:

Variables canoniques: q  p C 


   

Hamiltonien: 
2 2 2 21 1 1 1

2 2 2

1

2

1
H p

C LL C
q       

Commutateur:    , ,q p i   

11

LC
 

Flux magnétique
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PAB Hamiltonien LC

«Opérateur de création»:

«Opérateur d’annihilation»:

 , 1a a  

1

2
H a a  

    
 



 2 2

2

P Q
H 


 

11 1 1
p

C C
P

 
    

 


1 11 1
Q q

L L



   

 

 ,Q P i

...P i
Q


 



 1 1 1 1

2 2 L
a Q iP

C
i


       
 




 1 1 1 1

2 2 L
a Q iP

C
i


       
 



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PAB Charges et flux magnétique

1 1 1

2 L
a

C
i


     
 




1 1 1

2 L
a

C
i


     
 




 
2

4

4

C
i a a

L  


    




 
2

4

4

L
a a

C
  


  



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PAB Exemple: résonateur LC sur puce

CEA SaclayMicrostripe or coplanar waveguide
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PAB

Oscillateur

électro-magnétique

(E-B)
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PAB Vecteur potentiel A et Hamiltonien EM

( ) 0div B B A   ( ) ( )
B A

rot E E grad
t t

 
     

 

0

Lagrange:  
2• 22 2

0 0
0 0

1 1 1 1 1 1
A

2 2 2 2
L V E B V V A 

 
            

  

Variables canoniques q V A 
•

0 0• A
L

p V V E
q

 
     


 ,q p i 

0

2 22

0

1 11

2

1

2
H kp q


   2 2

0
0

1 1 1

2 2
H V E B


 

    
 

volume
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PAB Hamiltonien EM normalisé

 ,q p i 

Fréquence
00

21 1
ck k





  

Variables canoniques 
normalisées

0

0

1 V
P p E


  

    
 

2

0

k
Q q

 
 

  ,Q P i

 2 2

2

P Q
H 


 

0

2 22

0

1 11

2

1

2
H kp q


   Hamiltonien

Hamiltonien
normalisé
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PAB Création - annihilation

 1

2
a Q iP  Création

 1

2
a Q iP  Annihilation

 , 1a a  

1

2 2

a a a a
H a a     

 

         
   

 

c k  
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PAB EM fields pour une onde de propagation

  0

2

Vi
P a a E


     
  

0

1

2
ikz i t ikz i tE i a e a e

V
 


  

      


0 0

k
B E E 




  


 2
0

1

2
ikz i t ikz i tB i k a e a e

V
 

 
  

      




E i A    
0

1 1

2
ikz i t ikz i tA a e a e

V
 

 
  

      


Pour a-

Pour a+
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PAB Onde de propagation

https://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/electri/oem1.html
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PAB

Modes cohérents
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PAB Mode cohérent et son évolution
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PAB Distribution de Poisson et mode cohérent
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PAB Modes cohérents et 
opérateur d’annihilation
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PAB Pendule quantique
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PAB Rappel et comparaison
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PAB Modes cohérents: 
effet du nombre moyen de photons

Simulations par: Romain Nicolas Paul Couyoumtzelis

La fréquence est identique, mais l’amplitude augmente si <n> augmente

<n>=1 <n>=4 <n>=100

maxA n
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PAB Pendules quantiques

x

https://commons.wikimedia.org/wiki/File:QHO-catstate-even3-animation-color.gif

t

x

++
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PAB Rappel: Bose-Einstein comparé à Poisson
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PAB Modes photoniques

1) Modes de Fock: 0 0a   

2) Modes cohérents: Distribution 
de Poisson
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PAB Exercice 8.1: matrices de 
création et d’annihilation

Les modes propres de l’oscillateur harmonique 
forment une base orthonormée: 

0,1,...n n  

Un mode superposé de cet oscillateur prend la forme: 

0

1

2

0 1

1

...

...

n n
n n

n

n





  






 



 
 
 
 
 
    
 
 
 
  
 



Q: Ecrivez sous forme matricielle les opérateurs suivants:

 ?a   ?a   ?a a  
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PAB Exercice 8.2: Hamiltonien d’excitation

Considérons un résonateur LC harmonique. 
Une capacité est utilisée pour l’exciter 
par signal AC (Ve) à sa fréquence de résonance. 

 21

2 ee e e eH C V V C V V    

L’Hamiltonien contient un terme qui mélange
le signal d’excitation et la tension dans le circuit LC

La charge dans le circuit LC est donnée par:

   
1 42

4
eC C

i a a
L  

  
     

 




- Exprimez cet Hamiltonien He en fonction des opérateurs de création et d’annihilation

- Ecrivez cet Hamiltonien He sous forme matricielle

Oscillateur Harmonique LC

C
L

Ce

Ve

V
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PAB Exercice 8.3: Hamiltonien de couplage

Considérons deux résonateurs LC identiques. 
Une capacité est utilisée pour les coupler.

 2

1 2

1

2
...c cH C V V   

L’Hamiltonien contient un terme de couplage
entre les deux circuits. 
Inspirez-vous de l’exercice précédent pour 
exprimer ce terme

Utilisez les expressions de la charge dans chaque circuit
pour exprimer cet Hamiltonien de couplage en fonction
des opérateurs de création et d’annihilation des deux circuits.

ATTENTION: ne vous lancez pas dans une analyse matricielle !!

Cc

C
L

V1

C
L

V2
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PAB Exercice 8.4

2
20

Pourquoi la probabilité de trouver une particule augmente dans les bords ?

x


